Convolution discrete time - Functional Representation of Discrete Time Signal. In the functional representation of discrete time signals, the magnitude of the signal is written against the values of n. Therefore, the above discrete time signal x (n) can be represented using functional representation as given below. x(n) = { −2f orn = −3 3f orn = −2 0 f orn = −1 ...

 
Proofs of the properties of the discrete Fourier transform. Linearity. Statements: The DFT of the linear combination of two or more signals is the sum of the linear combination of DFT of individual signals. Proof: We will be proving the property: a 1 x 1 (n)+a 2 x 2 (n) a 1 X 1 (k) + a 2 X 2 (k) We have the formula to calculate DFT:. 74 gangster disciples knowledge

4 Convolution Solutions to Recommended Problems S4.1 The given input in Figure S4.1-1 can be expressed as linear combinations of xi[n], x 2[n], X3 [n]. x ... this system is not time-invariant. x 1 [n] +x 1 [n-1] =x2[n] n 0 1 Figure S4.1-3 S4-1. Signals and Systems S4-2 S4.2 The required convolutions are most easily done graphically by ...Digital Signal. Processing Discrete-Time Signals and Systems Lecturer: Prof. Dr. M.J.E. Salami. Discrete-Time Signals A discrete-time signal x(n) is a function of an independent variable that is an integer. It is assumed that a discrete-time signal is defined for every integer value n for - < n < . An example of a discretetime signal is shown in the figure below.The Discrete-Time Fourier Transform. It is important to distinguish between the concepts of the discrete-time Fourier transform (DTFT) and the discrete Fourier transform (DFT). The DTFT is a transform-pair relationship between a DT signal and its continuous-frequency transform that is used extensively in the analysis and design of DT systems.The Z-transform with a finite range of n and a finite number of uniformly spaced z values can be computed efficiently via Bluestein's FFT algorithm. The discrete-time Fourier transform (DTFT)—not to be confused with the discrete Fourier transform (DFT)—is a special case of such a Z-transform obtained by restricting z to lie on the unit …Dirac Delta Function. The Dirac delta function, often referred to as the unit impulse or delta function, is the function that defines the idea of a unit impulse in continuous-time.Informally, this function is one that is infinitesimally narrow, infinitely tall, yet integrates to one. Perhaps the simplest way to visualize this is as a rectangular pulse from \(a …• By the principle of superposition, the response y[n] of a discrete-time LTI system is the sum of the responses to the individual shifted impulses making up the input signal x[n]. 2.1 Discrete-Time LTI Systems: The Convolution Sum 2.1.1 Representation of Discrete-Time Signals in Terms of ImpulsesPart 4: Convolution Theorem & The Fourier Transform. The Fourier Transform (written with a fancy F) converts a function f ( t) into a list of cyclical ingredients F ( s): As an operator, this can be written F { f } = F. In our analogy, we convolved the plan and patient list with a fancy multiplication.Discrete-time convolution demo. Interactive app illustrating the concept of discrete-time convolution. Coimputes the response of the DTLTI system with impulse response h [n]=exp (-a*n)u [n] to unit-step input signal through convolution. Advance the sample index through a slider control to observe computational details.discrete-time sequences are the only things that can be stored and computed with computers. In what follows, we will express most of the mathematics in the continuous-time domain. But the examples will, by necessity, use discrete-time sequences. Pulse and impulse signals. The unit impulse signal, written (t), is one at = 0, and zero everywhere ...Convolution can change discrete signals in ways that resemble integration and differentiation. Since the terms "derivative" and "integral" specifically refer to operations on continuous signals, other names are given to their discrete counterparts. The discrete operation that mimics the first derivative is called the first difference .4 Convolution Solutions to Recommended Problems S4.1 The given input in Figure S4.1-1 can be expressed as linear combinations of xi[n], x 2[n], X3 [n]. x,[ n] ... this system is not time-invariant. x 1 [n] +x 1 [n-1] =x2[n] n 0 1 Figure S4.1-3 S4-1. Signals and Systems S4-2 S4.2 The required convolutions are most easily done graphically by ...lsim(sys,u,t) plots the simulated time response of the dynamic system model sys to the input history (t,u).The vector t specifies the time samples for the simulation. For single-input systems, the input signal u is a vector of the same length as t.For multi-input systems, u is an array with as many rows as there are time samples (length(t)) and as many columns …Discrete-Time Systems • A discrete-time system processes a given input sequence x[n] to generates an output sequence y[n] with more desirable propertiesThe properties of the discrete-time convolution are: Commutativity Distributivity Associativity Duration The duration of a discrete-time signal is defined by the discrete time instants and for which for every outside the interval the discrete- time signal . We use to denote the discrete-time signal duration. It follows that . Let the signalsPart 4: Convolution Theorem & The Fourier Transform. The Fourier Transform (written with a fancy F) converts a function f ( t) into a list of cyclical ingredients F ( s): As an operator, this can be written F { f } = F. In our analogy, we convolved the plan and patient list with a fancy multiplication.The FIR convolution is a cross-correlation between the input signal and a time-reversed copy of the impulse response. Therefore, the matched filter's impulse response is "designed" by sampling the known pulse-shape and using those samples in reverse order as the coefficients of the filter. ... Then, the discrete time Fourier transform of [] is ...The rest is detail. First, the convolution of two functions is a new functions as defined by \(\eqref{eq:1}\) when dealing wit the Fourier transform. The second and most relevant is that the Fourier transform of the convolution of two functions is …Divided into 17 chapters, this book presents the introductory topics such as discrete-time signals and systems, sampling and quantization, convolution, discrete-time Fourier series, discrete-time Fourier transform, and z-transform in a detailed manner. Further, topics such as discrete Fourier transform (DFT), fast Fourier transform (FFT ...The FIR convolution is a cross-correlation between the input signal and a time-reversed copy of the impulse response. Therefore, the matched filter's impulse response is "designed" by sampling the known pulse-shape and using those samples in reverse order as the coefficients of the filter. ... Then, the discrete time Fourier transform of [] is ...One of the given sequences is repeated via circular shift of one sample at a time to form a N X N matrix. The other sequence is represented as column matrix. The multiplication of two matrices give the result of circular convolution.d) x [n] + h [n] View Answer. 3. What are the tools used in a graphical method of finding convolution of discrete time signals? a) Plotting, shifting, folding, multiplication, and addition in order. b) Scaling, shifting, multiplication, and addition in order. c) Scaling, multiplication and addition in order. May 22, 2022 · The proof of the frequency shift property is very similar to that of the time shift (Section 9.4); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since we went through the steps in the previous, time-shift proof, below we will just show the initial and final step to this proof: z(t) = 1 2π ∫∞ ... Simulink ® models can process both discrete-time and continuous-time signals. Models built with the DSP System Toolbox™ are intended to process discrete-time signals only. A discrete-time signal is a sequence of values that correspond to particular instants in time. The time instants at which the signal is defined are the signal's sample ...31‏/10‏/2021 ... In this paper an analysis of discrete-time convolution is performed to prove that the convolution sum is polynomial multiplication without ...Operation Definition. Continuous time convolution is an operation on two continuous time signals defined by the integral. (f ∗ g)(t) = ∫∞ −∞ f(τ)g(t − τ)dτ ( f ∗ g) ( t) = ∫ − ∞ ∞ f ( τ) g ( t − τ) d τ. for all signals f f, g g defined on R R. It is important to note that the operation of convolution is commutative ...To compute the convolution of two sequences (vectors): First multiply the first term of each sequence with one another. This is the first term of the convolution. To get the n-th term of the result: . Compute the products a 0 b n, a 1 b n-1, etc., up to a n b 0.Note that the indices change simultaneously: the first one increases, while the second …This section provides discussion and proof of some of the important properties of discrete time convolution. Analogous properties can be shown for discrete time circular convolution with trivial modification of the proofs provided except where explicitly noted otherwise.Time System: We may use Continuous-Time signals or Discrete-Time signals. It is assumed the difference is known and understood to readers. Convolution may be defined for CT and DT signals. Linear Convolution: Linear Convolution is a means by which one may relate the output and input of an LTI system given the system’s impulse response ...The second section uses a reversed sequence. This implements the following transfer function::. lfilter (b, a, x [, axis, zi]) Filter data along one-dimension with an IIR or FIR filter. lfiltic (b, a, y [, x]) Construct initial conditions for lfilter given input and output vectors.The convolution theorem states that convolution in the time domain is equivalent to multiplication in the frequency domain. The frequency domain can also be used to improve the execution time of convolutions. Using the FFT algorithm, signals can be transformed to the frequency domain, multiplied, and transformed back to the time domain. For ...Perform discrete-time circular convolution by using toeplitz to form the circulant matrix for convolution. Define the periodic input x and the system response h. x = [1 8 3 2 5]; h = [3 5 2 4 1]; Form the column vector c to create a circulant matrix where length(c) = length(h).Discrete-time convolution demo. Interactive app illustrating the concept of discrete-time convolution. Coimputes the response of the DTLTI system with impulse response h [n]=exp (-a*n)u [n] to unit-step input signal through convolution. Advance the sample index through a slider control to observe computational details.Convolution can change discrete signals in ways that resemble integration and differentiation. Since the terms "derivative" and "integral" specifically refer to operations on continuous signals, other names are given to their discrete counterparts. The discrete operation that mimics the first derivative is called the first difference .May 22, 2022 · Discrete time convolution is an operation on two discrete time signals defined by the integral. (f ∗ g)[n] = ∑k=−∞∞ f[k]g[n − k] for all signals f, g defined on Z. It is important to note that the operation of convolution is commutative, meaning that. f ∗ g = g ∗ f. Continuous time convolution Discrete time convolution Circular convolution Correlation Manas Das, IITB Signal Processing Using Scilab. Di erent types of Transform May 22, 2022 · Discrete time convolution is an operation on two discrete time signals defined by the integral. (f ∗ g)[n] = ∑k=−∞∞ f[k]g[n − k] for all signals f, g defined on Z. It is important to note that the operation of convolution is commutative, meaning that. f ∗ g = g ∗ f. How to use a Convolutional Neural Network to suggest visually similar products, just like Amazon or Netflix use to keep you coming back for more. Receive Stories from @inquiringnomad Get hands-on learning from ML experts on CourseraThe identity under convolution is the unit impulse. (t0) gives x 0. u (t) gives R t 1 x dt. Exercises Prove these. Of the three, the first is the most difficult, and the second the easiest. 4 Time Invariance, Causality, and BIBO Stability Revisited Now that we have the convolution operation, we can recast the test for time invariance in a new ... Jul 5, 2012 · Discrete-time convolution represents a fundamental property of linear time-invariant (LTI) systems. Learn how to form the discrete-time convolution sum and s... convolution of two functions. Natural Language. Math Input. Wolfram|Alpha brings expert-level knowledge and capabilities to the broadest possible range of people—spanning all professions and education levels.4.3: Discrete Time Convolution. Convolution is a concept that extends to all systems that are both linear and time-invariant (LTI). It will become apparent in this discussion that this condition is necessary by demonstrating how linearity and time-invariance give rise to convolution. 4.4: Properties of Discrete Time Convolution.Discrete Convolution • In the discrete case s(t) is represented by its sampled values at equal time intervals s j • The response function is also a discrete set r k – r 0 tells what multiple of the input signal in channel j is copied into the output channel j – r 1 tells what multiple of input signal j is copied into the output channel j+10 1 +⋯ ∴ 0 =3 +⋯ Table Method Table Method The sum of the last column is equivalent to the convolution sum at y[0]! ∴ 0 = 3 Consulting a larger table gives more values of y[n] Notice what happens as decrease n, h[n-m] shifts up in the table (moving forward in time). ∴ −3 = 0 ∴ −2 = 1 ∴ −1 = 2 ∴ 0 = 308‏/09‏/2022 ... Discrete Time Convolution 3. Convolution - Analog 4. Convolution - Complete example 5. Properties of Continuous Time Convolution 4. Analog ...17‏/07‏/2021 ... 5. convolution and correlation of discrete time signals - Download as a PDF or view online for free.The behavior of a linear, time-invariant discrete-time system with input signal x [n] and output signal y [n] is described by the convolution sum. The signal h [n], assumed known, is the response of thesystem to a unit-pulse input. The convolution summation has a simple graphical interpretation.First, plot h [k] and the "flipped and shifted" x ...The delayed and shifted impulse response is given by f (i·ΔT)·ΔT·h (t-i·ΔT). This is the Convolution Theorem. For our purposes the two integrals are equivalent because f (λ)=0 for λ<0, h (t-λ)=0 for t>xxlambda;. The arguments in the integral can also be switched to give two equivalent forms of the convolution integral. Simple Convolution in C Updated April 21, 2020 In this blog post we’ll create a simple 1D convolution in C. We’ll show the classic example of convolving two squares to create a triangle. When convolution is performed it’s usually between two discrete signals, or time series. In this example we’ll use C arrays to represent each signal.1. Add a comment. 9. The delta "function" is the multiplicative identity of the convolution algebra. That is, ∫ f(τ)δ(t − τ)dτ = ∫ f(t − τ)δ(τ)dτ = f(t) ∫ f ( τ) δ ( t − τ) d τ = ∫ f ( t − τ) δ ( τ) d τ = f ( t) This is essentially the definition of δ δ: the distribution with integral 1 1 …The behavior of a linear, time-invariant discrete-time system with input signal x [n] and output signal y [n] is described by the convolution sum. The signal h [n], assumed …Perform discrete-time circular convolution by using toeplitz to form the circulant matrix for convolution. Define the periodic input x and the system response h. x = [1 8 3 2 5]; h = [3 5 2 4 1]; Form the column vector c to create a circulant matrix where length(c) = length(h).Discrete-Time Modulation The modulation property is basically the same for continuous-time and dis-crete-time signals. The principal difference is that since for discrete-time sig-nals the Fourier transform is a periodic function of frequency, the convolution of the spectra resulting from multiplication of the sequences is a periodic con- The Discrete-Time Convolution (DTC) is one of the most important operations in a discrete-time signal analysis [6]. The operation relates the output sequence y(n) of a linear-time invariant (LTI) system, with the input sequence x(n) and the unit sample sequence h(n), as shown in Fig. 1.An example of discrete time convolution sum of two signals under the umbrella of signals and systems in discussed in this video tutorial.Convolution is used in the mathematics of many fields, such as probability and statistics. In linear systems, convolution is used to describe the relationship between three signals of interest: the input signal, the impulse response, and the output signal. Figure 6-2 shows the notation when convolution is used with linear systems.Divided into 17 chapters, this book presents the introductory topics such as discrete-time signals and systems, sampling and quantization, convolution, discrete-time Fourier series, discrete-time Fourier transform, and z-transform in a detailed manner. Further, topics such as discrete Fourier transform (DFT), fast Fourier transform (FFT ...1, and for all time shifts k, then the system is called time-invariant or shift-invariant. A simple interpretation of time-invariance is that it does not matter when an input is applied: a delay in applying the input results in an equal delay in the output. 2.1.5 Stability of linear systemsMay 22, 2022 · Conclusion. Like other Fourier transforms, the DTFS has many useful properties, including linearity, equal energy in the time and frequency domains, and analogs for shifting, differentation, and integration. Table 7.4.1 7.4. 1: Properties of the Discrete Fourier Transform. Property. Signal. The identity under convolution is the unit impulse. (t0) gives x 0. u (t) gives R t 1 x dt. Exercises Prove these. Of the three, the first is the most difficult, and the second the easiest. 4 Time Invariance, Causality, and BIBO Stability Revisited Now that we have the convolution operation, we can recast the test for time invariance in a new ... The discrete-time Fourier transform of a discrete sequence of real or complex numbers x[n], for all integers n, is a Trigonometric series, which produces a periodic function of a frequency variable. When the frequency variable, ω, has normalized units of radians/sample, the periodicity is 2π, and the DTFT series is: [1] : p.147.The output of a discrete time LTI system is completely determined by the input and the system's response to a unit impulse. Figure 4.2.1 4.2. 1: We can determine the system's output, y[n] y [ n], if we know the system's impulse response, h[n] h [ n], and the input, x[n] x [ n]. The output for a unit impulse input is called the impulse response.The digital convolution with sample interval t = 1 is summarized as: Flip (reverse) one of the digital functions. Shift it along the time axis by one sample, j.11 videos. Convolution. Iain Explains Signals, Systems, and Digital Comms. Standard Differential Equation for LTI Systems. Neso Academy.A convolution is an integral that expresses the amount of overlap of one function g as it is shifted over another function f. It therefore "blends" one function with another. For example, in synthesis imaging, the measured dirty map is a convolution of the "true" CLEAN map with the dirty beam (the Fourier transform of the sampling distribution). The convolution is sometimes also known by its ...Continuous time convolution Discrete time convolution Circular convolution Correlation Manas Das, IITB Signal Processing Using Scilab. Di erent types of Transform This is called a continuous time system. Similarly, a discrete-time linear time-invariant (or, more generally, "shift-invariant") system is defined as one operating in discrete time: = where y, x, and h are sequences and the convolution, in discrete time, uses a discrete summation rather than an integral.The convolution/sum of probability distributions arises in probability theory and statistics as the operation in terms of probability distributions that corresponds to the addition of independent random variables and, by extension, to forming linear combinations of random variables. The operation here is a special case of convolution in the context of …May 22, 2022 · Operation Definition. Continuous time convolution is an operation on two continuous time signals defined by the integral. (f ∗ g)(t) = ∫∞ −∞ f(τ)g(t − τ)dτ ( f ∗ g) ( t) = ∫ − ∞ ∞ f ( τ) g ( t − τ) d τ. for all signals f f, g g defined on R R. It is important to note that the operation of convolution is commutative ... Although “free speech” has been heavily peppered throughout our conversations here in America since the term’s (and country’s) very inception, the concept has become convoluted in recent years.Simulink ® models can process both discrete-time and continuous-time signals. Models built with the DSP System Toolbox™ are intended to process discrete-time signals only. A discrete-time signal is a sequence of values that correspond to particular instants in time. The time instants at which the signal is defined are the signal's sample ...The discrete-time SSM (left), a sequence-to-sequence map, is exactly equivalent to applying the continuous-time SSM (right), a function-to-function map, on the held signal. This simple "interpolation" (just turn the input sequence into a step function) is called a hold in signals, as it involves holding the value of the previous sample until ...Operation Definition. Discrete time convolution is an operation on two discrete time signals defined by the integral. (f ∗ g)[n] = ∑k=−∞∞ f[k]g[n − k] for all signals f, g defined on Z. It is important to note that the operation of convolution is commutative, meaning that. f ∗ g = g ∗ f. for all signals f, g defined on Z.2.4.2 What is Convolution? Convolution: Convolution is a mathematical way of combining two signals to form a third signal. It is equivalent to finite impulse response (FIR) filtering. It is important in digital signal processing because convolving two sequences in time domain is equivalent to multiplying the sequences in frequency domain. It relates …The delayed and shifted impulse response is given by f (i·ΔT)·ΔT·h (t-i·ΔT). This is the Convolution Theorem. For our purposes the two integrals are equivalent because f (λ)=0 for λ<0, h (t-λ)=0 for t>xxlambda;. The arguments in the integral can also be switched to give two equivalent forms of the convolution integral.Convolution Sum. As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an LTI system based on an arbitrary discrete-time input signal and the system's impulse response. The convolution sum is expressed as. y[n] = ∑k=−∞∞ x[k]h[n − k] y [ n] = ∑ k = − ∞ ∞ x [ k] h [ n − k] As ...31‏/10‏/2021 ... In this paper an analysis of discrete-time convolution is performed to prove that the convolution sum is polynomial multiplication without ...discrete-time sequences are the only things that can be stored and computed with computers. In what follows, we will express most of the mathematics in the continuous-time domain. But the examples will, by necessity, use discrete-time sequences. Pulse and impulse signals. The unit impulse signal, written (t), is one at = 0, and zero everywhere ...This set of Signals & Systems Multiple Choice Questions & Answers (MCQs) focuses on “Continuous Time Convolution – 2”. For all the following problems, h*x denotes h convolved with x. $ indicates integral. 1. Find the value of [d (t) – d (t-1)] * -x [t+1]. a) x (t+1) – x (t) b) x (t) – x (t+1) c) x (t) – x (t-1) d) x (t-1) – x ...20‏/02‏/2022 ... Discrete time convolution is not possible in MATLAB. (a) True (b) False This ... Signals topic in division Digital Signal Processing of ...emulate continuity and therefore discrete time and quantized amplitude as well as finite bounds of the convolution window are used. 46. 47. Examples. ... • Continuous vs. discrete convolution (analogy: FT vs. DFT) 49. Additional Literature – Week 2. Related course material - Information, Calcul, Communication (ICC) - Analysis IVWrite a MATLAB routine that generally computes the discrete convolution between two discrete signals in time-domain. (Do not use the standard MATLAB “conv” function.) • Apply your routine to compute the convolution rect ( t / 4 )*rect ( 2 t / 3 ). Running this code and and also the built in conv function to convolute two signals makes …The rest is detail. First, the convolution of two functions is a new functions as defined by \(\eqref{eq:1}\) when dealing wit the Fourier transform. The second and most relevant is that the Fourier transform of the convolution of two functions is …

Digital Signal Processing Questions and Answers – Analysis of Discrete time LTI Systems ... Convolution sum b) Convolution product c) Convolution Difference d) None of the mentioned View Answer. Answer: a Explanation: The input x(n) is convoluted with the impulse response h(n) to yield the output y(n). As we are summing the different values .... Architectural engineering classes

convolution discrete time

May 22, 2022 · The proof of the frequency shift property is very similar to that of the time shift (Section 9.4); however, here we would use the inverse Fourier transform in place of the Fourier transform. Since we went through the steps in the previous, time-shift proof, below we will just show the initial and final step to this proof: z(t) = 1 2π ∫∞ ... Convolution of discrete-time signals Causal LTI systems with causal inputs Discrete convolution: an example The unit pulse response Let us consider a discrete-time LTI system y[n] = Snx[n]o and use the unit pulse δ[n] = 1, n = 0 0, n 6 = 0 as input. δ[n] 0 1 n Let us define the unit pulse response of S as the corresponding output: h[n] = Snδ[n]oDiscrete atoms are atoms that form extremely weak intermolecular forces, explains the BBC. Because of this property, molecules formed from discrete atoms have very low boiling and melting points.Discrete Time Fourier Series. Here is the common form of the DTFS with the above note taken into account: f[n] = N − 1 ∑ k = 0ckej2π Nkn. ck = 1 NN − 1 ∑ n = 0f[n]e − (j2π Nkn) This is what the fft command in MATLAB does. This modules derives the Discrete-Time Fourier Series (DTFS), which is a fourier series type expansion for ...Dec 4, 2019 · Convolution, at the risk of oversimplification, is nothing but a mathematical way of combining two signals to get a third signal. There’s a bit more finesse to it than just that. In this post, we will get to the bottom of what convolution truly is. We will derive the equation for the convolution of two discrete-time signals. One of the given sequences is repeated via circular shift of one sample at a time to form a N X N matrix. The other sequence is represented as column matrix. The multiplication of two matrices give the result of circular convolution.DSP - Operations on Signals Convolution. The convolution of two signals in the time domain is equivalent to the multiplication of their representation in frequency domain. Mathematically, we can write the convolution of two signals as. y(t) = x1(t) ∗ x2(t) = ∫∞ − ∞x1(p). x2(t − p)dp.What are the tools used in a graphical method of finding convolution of discrete time signals? a) Plotting, shifting, folding, multiplication, and addition ...2.8, and 2.9 develop and explore the Fourier transform representation of discrete-time signals as a linear combination of complex exponentials. Section 2.10 provides a brief introduction to discrete-time random signals. 2.1 DISCRETE-TIME SIGNALS Discrete-time signals are represented mathematically as sequences of numbers. A se- The convolution of discrete-time signals and is defined as. (3.22) This is sometimes called acyclic convolution to distinguish it from the cyclic convolution DFT 264 i.e.3.6. The convolution theorem is then. (3.23) convolution in the time domain corresponds to pointwise multiplication in the frequency domain. w = conv (u,v) returns the convolution of vectors u and v. If u and v are vectors of polynomial coefficients, convolving them is equivalent to multiplying the two polynomials. w = conv (u,v,shape) returns a subsection of the convolution, as specified by shape . For example, conv (u,v,'same') returns only the central part of the convolution, the ...Signal & System: Tabular Method of Discrete-Time Convolution Topics discussed:1. Tabulation method of discrete-time convolution.2. Example of the tabular met...In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ....

Popular Topics